The Classification of Reversible Bit Operations
نویسندگان
چکیده
We present a complete classification of all possible sets of classical reversible gates acting on bits, in terms of which reversible transformations they generate, assuming swaps and ancilla bits are available for free. Our classification can be seen as the reversible-computing analogue of Post’s lattice, a central result in mathematical logic from the 1940s. It is a step toward the ambitious goal of classifying all possible quantum gate sets acting on qubits. Our theorem implies a linear-time algorithm (which we have implemented), that takes as input the truth tables of reversible gates G and H, and that decides whether G generates H. Previously, this problem was not even known to be decidable (though with effort, one can derive from abstract considerations an algorithm that takes triply-exponential time). The theorem also implies that any n-bit reversible circuit can be “compressed” to an equivalent circuit, over the same gates, that uses at most 2 poly (n) gates and O(1) ancilla bits; these are the first upper bounds on these quantities known, and are close to optimal. Finally, the theorem implies that every non-degenerate reversible gate can implement either every reversible transformation, or every affine transformation, when restricted to an “encoded subspace.” Briefly, the theorem says that every set of reversible gates generates either all reversible transformations on n-bit strings (as the Toffoli gate does); no transformations; all transformations that preserve Hamming weight (as the Fredkin gate does); all transformations that preserve Hamming weight mod k for some k; all affine transformations (as the Controlled-NOT gate does); all affine transformations that preserve Hamming weight mod 2 or mod 4, inner products mod 2, or a combination thereof; or a previous class augmented by a NOT or NOTNOT gate. Prior to this work, it was not even known that every class was finitely generated. Ruling out the possibility of additional classes, not in the list, requires some arguments about polynomials, lattices, and Diophantine equations.
منابع مشابه
A Classification of Reversible Bit and Stabilizer Operations
This thesis is an exposition of a classification of classical reversible gates acting on bits in terms of the reversible transformations they generate, which was recently completed by the author, Scott Aaronson, and Luke Schaeffer. In particular, we present those portions of the classification which were the main contributions of the author. Most importantly, this thesis contains the proof that...
متن کاملInvestigation of Thermal Operational Regimes for Diamond Bit Drilling Operations (TECHNICAL NOTE)
This paper reviews existing studies and investigates thermal operational regimes of diamond bit during drilling operations. The operating temperature of the diamond core drill is studied under bench condition and an optimal thermal range are presented. Based on this study, it was noted that glazing of diamond tools is observed at temperatures less than 327°C, and normal wear of diamond tools is...
متن کاملA Novel Design of Reversible Multiplier Circuit (TECHNICAL NOTE)
Adders and multipliers are two main units of the computer arithmetic processors and play an important role in reversible computations. The binary multiplier consists of two main parts, the partial products generation circuit (PPGC) and the reversible parallel adders (RPA). This paper introduces a novel reversible 4×4 multiplier circuit that is based on an advanced PPGC with Peres gates only. Ag...
متن کاملDesign and Implementation 16 BIT REVERSIBLE LOGIC ALU with 15-Operations
Reversible logic is one of the emerging technologies having promising applications in quantum computing. This project will deal with the design of a 16 bit reversible Arithmetic Logic Unit (ALU) with 15 operations is presented by making use of Double Peres gate, Fredkin gate, Toffolli gate, DKG gate and NOT gate. A new VLSI architecture for ALU using reversible logic gates is proposed. ALU is o...
متن کاملNovel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata
Application of quantum-dot is a promising technology for implementing digital systems at nano-scale. Quantum-dot Cellular Automata (QCA) is a system with low power consumption and a potentially high density and regularity. Also, QCA supports the new devices with nanotechnology architecture. This technique works </...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015